A generalized matrix Krylov subspace method for TV regularization

نویسندگان

  • A. H. Bentbib
  • M. El Guide
  • Khalide Jbilou
چکیده

This paper presents an efficient algorithm to solve total variation (TV) regularizations of images contaminated by a both blur and noise. The unconstrained structure of the problem suggests that one can solve a constrained optimization problem by transforming the original unconstrained minimization problem to an equivalent constrained minimization one. An augmented Lagrangian method is developed to handle the constraints when the model is given with matrix variables, and an alternating direction method (ADM) is used to iteratively find solutions. The solutions of some sub-problems are belonging to subspaces generated by application of successive orthogonal projections onto a class of generalized matrix Krylov subspaces of increasing dimension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation

In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...

متن کامل

Tikhonov regularization based on generalized Krylov subspace methods

We consider Tikhonov regularization of large linear discrete ill-posed problems with a regularization operator of general form and present an iterative scheme based on a generalized Krylov subspace method. This method simultaneously reduces both the matrix of the linear discrete ill-posed problem and the regularization operator. The reduced problem so obtained may be solved, e.g., with the aid ...

متن کامل

A Cascadic Alternating Krylov Subspace Image Restoration Method

This paper describes a cascadic image restoration method which at each level applies a two-way alternating denoising and deblurring procedure. Denoising is carried out with a wavelet transform, which also provides an estimate of the noise-level. The latter is used to determine a suitable regularization parameter for the Krylov subspace iterative deblurring method. The cascadic multilevel method...

متن کامل

Sylvester Tikhonov - regularization methods in image restoration

In this paper, we consider large-scale linear discrete ill-posed problems where the right-hand side contains noise. Regularization techniques such as Tikhonov regularization are needed to control the effect of the noise on the solution. In many applications such as in image restoration the coefficient matrix is given as a Kronecker product of two matrices and then Tikhonov regularization proble...

متن کامل

Image Deblurring with Krylov Subspace Methods

Image deblurring, i.e., reconstruction of a sharper image from a blurred and noisy one, involves the solution of a large and very ill-conditioned system of linear equations, and regularization is needed in order to compute a stable solution. Krylov subspace methods are often ideally suited for this task: their iterative nature is a natural way to handle such largescale problems, and the underly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.03527  شماره 

صفحات  -

تاریخ انتشار 2018